组织病理学仍然是各种癌症诊断的黄金标准。计算机视觉的最新进展,特别是深度学习,促进了针对各种任务的组织病理学图像的分析,包括免疫细胞检测和微卫星不稳定性分类。每个任务的最新工作通常采用鉴定的基础体系结构,这些体系结构已鉴定为图像分类。开发组织病理学分类器的标准方法倾向于将重点放在优化单个任务的模型上,而不是考虑建模创新的各个方面,从而改善了跨任务的概括。在这里,我们提出了Champkit(模型预测工具包的全面组织病理学评估):可扩展的,完全可重现的基准测试工具包,由大量的斑点级图像分类任务组成,跨不同的癌症。 Champkit能够系统地记录模型和方法中提议改进的性能影响的一种方法。 Champkit源代码和数据可在https://github.com/kaczmarj/champkit上自由访问。
translated by 谷歌翻译
虽然我们注意临床自然语言处理(NLP)的最新进展,但我们可以注意到临床和翻译研究界的一些抵抗,因为透明度,可解释性和可用性有限,采用NLP模型。在这项研究中,我们提出了一种开放的自然语言处理开发框架。我们通过实施NLP算法为国家Covid队列协作(N3C)进行了评估。基于Covid-19相关临床笔记的信息提取的利益,我们的工作包括1)使用Covid-19标志和症状作为用例的开放数据注释过程,2)一个社区驱动的规则集合平台,3)合成文本数据生成工作流程,用于生成信息提取任务的文本而不涉及人为受试者。 Corpora来自来自三个不同机构的文本(Mayo Clinic,肯塔基州大学,明尼苏达大学)。用单个机构(Mayo)规则集进行了金标准注释。这导致了0.876,0.706和0.694的F-Scors分别用于Mayo,Minnesota和肯塔基测试数据集。作为N3C NLP子群体的联盟努力的研究表明,创建联邦NLP算法开发和基准测试平台的可行性,以增强多机构临床NLP研究和采用。虽然我们在这项工作中使用Covid-19作为用例,但我们的框架足以适用于临床NLP的其他兴趣领域。
translated by 谷歌翻译
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in the digital pathology workflow. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2 % in average precision for detection and 5.6 % in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL and ConCL, the average precision in detection is improved by 0.7 % to 5.2 % and the average precision in segmentation is improved by 0.7 % to 4.0 %, demonstrating its generalizability.
translated by 谷歌翻译
Deep learning-based pose estimation algorithms can successfully estimate the pose of objects in an image, especially in the field of color images. 6D Object pose estimation based on deep learning models for X-ray images often use custom architectures that employ extensive CAD models and simulated data for training purposes. Recent RGB-based methods opt to solve pose estimation problems using small datasets, making them more attractive for the X-ray domain where medical data is scarcely available. We refine an existing RGB-based model (SingleShotPose) to estimate the 6D pose of a marked cube from grayscale X-ray images by creating a generic solution trained on only real X-ray data and adjusted for X-ray acquisition geometry. The model regresses 2D control points and calculates the pose through 2D/3D correspondences using Perspective-n-Point(PnP), allowing a single trained model to be used across all supporting cone-beam-based X-ray geometries. Since modern X-ray systems continuously adjust acquisition parameters during a procedure, it is essential for such a pose estimation network to consider these parameters in order to be deployed successfully and find a real use case. With a 5-cm/5-degree accuracy of 93% and an average 3D rotation error of 2.2 degrees, the results of the proposed approach are comparable with state-of-the-art alternatives, while requiring significantly less real training examples and being applicable in real-time applications.
translated by 谷歌翻译
深度学习方法为多级医学图像细分实现了令人印象深刻的表现。但是,它们的编码不同类别(例如遏制和排除)之间拓扑相互作用的能力受到限制。这些约束自然出现在生物医学图像中,对于提高分割质量至关重要。在本文中,我们介绍了一个新型的拓扑交互模块,将拓扑相互作用编码为深神经网络。该实施完全基于卷积,因此非常有效。这使我们有能力将约束结合到端到端培训中,并丰富神经网络的功能表示。该方法的功效在不同类型的相互作用上得到了验证。我们还证明了该方法在2D和3D设置以及跨越CT和超声之类的不同模式中的专有和公共挑战数据集上的普遍性。代码可在以下网址找到:https://github.com/topoxlab/topointeraction
translated by 谷歌翻译
组织病理学全幻灯片图像(WSIS)在临床研究中起着非常重要的作用,并作为许多癌症诊断的黄金标准。但是,由于其巨大尺寸,生成用于处理WSIS的自动工具是具有挑战性的。当前,为了解决这个问题,传统方法依靠多个实例学习(MIL)策略来处理贴剂级别的WSI。尽管有效,但这种方法在计算上很昂贵,因为将WSI整理成斑块需要时间,并且不探索这些瓷砖之间的空间关系。为了解决这些限制,我们提出了一个本地监督的学习框架,该框架通过探索包含的整个本地和全球信息来处理整个幻灯片。该框架将预训练的网络划分为几个模块,并使用辅助模型在本地优化每个模块。我们还引入了一个随机特征重建单元(RFR),以在训练过程中保留区分特征,并将方法的性能提高1%至3%。对三个公开可用的WSI数据集进行了广泛的实验:TCGA-NSCLC,TCGA-RCC和LKS,突出了我们方法在不同分类任务上的优越性。我们的方法的准确性优于最先进的MIL方法,而高7至10倍。此外,将其分为八个模块时,我们的方法需要端到端培训所需的GPU总内存总数的20%。我们的代码可从https://github.com/cvlab-stonybrook/local_learning_wsi获得。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
神经科学家和机器学习研究人员通常引用对抗的例子,作为计算模型如何从生物感官系统发散的示例。最近的工作已经提出将生物启发组件添加到视觉神经网络中,作为提高其对抗性鲁棒性的一种方式。一种令人惊讶的有效组分,用于减少对抗性脆弱性是响应随机性,例如由生物神经元呈现的响应性随机性。在这里,使用最近开发的从计算神经科学的几何技术,我们研究了对抗性扰动如何影响标准,前列培训和生物学启发的随机网络的内部表示。我们为每种类型的网络找到了不同的几何签名,揭示了实现稳健表示的不同机制。接下来,我们将这些结果概括为听觉域,表明神经插值性也使听觉模型对对抗对抗扰动更鲁棒。随机网络的几何分析揭示了清洁和离前动脉扰动刺激的表示之间的重叠,并且定量表现出随机性的竞争几何效果在对抗和清洁性能之间调解权衡。我们的结果阐明了通过对外内培训和随机网络利用的强大感知的策略,并帮助解释了随机性如何有利于机器和生物计算。
translated by 谷歌翻译